Errata for "Introduction to Elementary Particles, 2nd ed."

All previous errata corrected in the 8th Printing (2014)
David Griffiths
January 31, 2020

- Page v, 3 and 4 lines from bottom: 2.4.3 \rightarrow 2.4.2.2 and 2.4.4 \rightarrow 2.4.3.
- Page xiv, "Vector Mesons" table: add a new line, between ω and ψ :

$$
\begin{array}{cccccc}
\phi & s \bar{s} & 0 & 1019 & 2 \times 10^{-22} & K K
\end{array}
$$

- Page 86, Reference 1, lines 3-4: change "Gaillard, M." to "Griffiths, D." If there is space enough, add at the end of ref. 1 the following: "The term "asthenons" for the W and the Z was proposed by T. Curtright and P. G. O. Freund in "Supergravity," Proc. Supergravity Workshop at Stony Brook (Sept. 1979), eds. P. van Niewenhuizen and D. Z. Freedman (North-Holland, Amsterdam, 1979), p. 197."
- Page 86, Problem 2.3, line 2: "disconnected diagrams don't count" \rightarrow "disconnected diagrams and "tadpoles"-photon lines terminating in an electron loop-don't count".
- Page 111, Problem 3.12, line 3: erase final "s" on "systems".
- Page 112, Problem 3.19(b), answer, line 1: erase comma in denominator, and insert comma at the end of the line (matching the colon and period on the lines below).
- Page 126 , line after (4.21): insert "(Where confusion might arise I'll use a hat to denote matrices and operators.)".
- Page 150, line after Eq. 4.76: replace "; no experiment has shown direct evidence of T violation" by "Direct observation of T violation was claimed by A. Angelopoulos, et al., Physics Lett. B 444, 43 (1998), but that implication has been challenged. See Physics Today, November 2012, page 16. At any rate, T violation has now been seen unambiguously: J. P. Lees, et al., Phys. Rev. Lett. 109, 211801 (2012)." Begin the following paragraph with "Moreover" instead of "Nevertheless".
- Page 179 , line 2: erase " $\pi^{0} \rightarrow$ ".
- Page 194, reference 17: "Physiology \rightarrow "Physics".
- Page 195, Problem 5.12, last line: change period to comma after "MA".
- Page 196, Problem 5.21, line 1: erase comma after " μ_{p} ".
- Page 223, Problem 6.10(a), line 1: "problem of elastic scattering ($m_{3}=$ $\left.m_{1}, m_{4}=m_{2}\right)$ in the" \rightarrow "problem of two-body scattering $(1+2 \rightarrow 3+4)$ in the"; Problem 6.10(b), line 1: "massless $\left(m_{1}=0\right)$, show that" \rightarrow "massless $\left(m_{1}=0\right)$, and the collision is elastic ($\left.m_{3}=m_{1}, m_{4}=m_{2}\right)$, show that".
- Page 223, Problem 6.14, line 1: erase comma after "frame".
- Page 234, second footnote, line 3: change "and" to "that".
- Page 236, 2 lines after (7.57): change 3.12 to 3.13 .
- Page 243, under Feynman Rules, item 1, line 5: "(arbitrarily assigned)" \rightarrow "(for fermions, match the arrow on the line; for photons the direction is arbitrary)".
- Page 247, right column of footnote, line $4: 6.34 \rightarrow 6.38$.
- Page 259: reverse signs on right sides of Equations 7.152, 7.154, 7.155, $7.156,7.157$, and 7.158 (that is: insert a minus sign on 152 and 157 , erase the minus sign on $154,155,156$, and 158).
- Page 260, Equations 7.161 and 7.162 : change \hat{k} to \hat{z}; remove minus sign on 7.163.
Page 260, Equation 7.164: insert $\frac{1}{2}$ in front of the parentheses, and in the next line (before "Here") insert the following: "(because there are two identical particles in the final state, the statistical factor S is $1 / 2$)."
- Page 260, Equation 7.166: $v \rightarrow v_{i}$, and change the following line to read: "where $v_{i}=v / 2$ is the incident electron (or positron) speed, ${ }^{\dagger}$ and v is their relative velocity."
- Page 262, second figure: the arrow pointing up and labeled $q-k$ should point down and be labeled $k-q$.
- Page 268, Problem 7.4, line 1: $u^{(1)^{\dagger}} u^{(2)} \rightarrow \bar{u}^{(1)} u^{(2)}$.
- Page 273, Problem 7.51(b): change the plus sign in the displayed equation to a minus sign.
- Page 303, Problem 8.4, line 7, where it now reads "So $L^{\mu \nu} K_{\nu \mu}=L^{\mu \nu} \ldots$. .: erase $=L^{\mu \nu}$.
- Page 327, Figures 9.4 and 9.5: in both figures the arrows on the three lines on the right should be reversed (instead of running generally upward they should go generally downward).
- Page 337, footnote, line 4: $\operatorname{Re}\left(\mathcal{M}_{\gamma} \mathcal{M}_{Z}\right)$ should $\operatorname{read} \operatorname{Re}\left(\mathcal{M}_{\gamma}^{*} \mathcal{M}_{Z}\right)$.
- Page 345: in 9.147, $W^{\mu+} \rightarrow W^{\mu-}$ and $W^{\mu-} \rightarrow W^{\mu+}$; on right side of 9.148, $\mp \rightarrow \pm$; in the line before 9.149: $j_{\mu}^{-} \rightarrow j_{\mu}^{+}$; in $9.149 j_{\mu}^{-} \rightarrow j_{\mu}^{+}$.
- Page 398, reference 6, line 4: insert period after (2004); 2 lines later, change semicolon to comma after "Institute".
- Page 403, top line: $\left.i M_{m}^{2} c^{3} g^{\mu \nu} / v \sqrt{\hbar c}\right) \rightarrow 2 i M_{m}^{2} c^{3} g^{\mu \nu} / v \sqrt{\hbar c}$.
- Page 403, line after first diagram: $\left.-i m_{h}^{2} c^{3} / 2 v \sqrt{\hbar c} \rightarrow-3 i m_{h}^{2} c^{3} / v \sqrt{\hbar c}\right)$.
- Page 445: "Furry's theorem 273 " \rightarrow "Furry's theorem 272".
- Page 447: move "intersecting storage rings" above "intrinsic angular momentum".
- Page 452: add "tadpole 86 ".

